There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx{x}^{x}xxxxxxxxxxxxxxxxxxxxxxxxxxxxx{x}^{cot(x)}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{100}{x}^{x}{x}^{cot(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{100}{x}^{x}{x}^{cot(x)}\right)}{dx}\\=&100x^{99}{x}^{x}{x}^{cot(x)} + x^{100}({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){x}^{cot(x)} + x^{100}{x}^{x}({x}^{cot(x)}((-csc^{2}(x))ln(x) + \frac{(cot(x))(1)}{(x)}))\\=&-x^{100}{x}^{cot(x)}{x}^{x}ln(x)csc^{2}(x) + x^{100}{x}^{x}{x}^{cot(x)}ln(x) + x^{99}{x}^{cot(x)}{x}^{x}cot(x) + x^{100}{x}^{x}{x}^{cot(x)} + 100x^{99}{x}^{x}{x}^{cot(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!