There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - \frac{7*\frac{3}{10}sin(66t)}{6})}{(1 + \frac{\frac{3}{10}sin(66t)}{\frac{7}{10}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{7}{20}sin(66t)}{(\frac{3}{7}sin(66t) + 1)} + \frac{1}{(\frac{3}{7}sin(66t) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{7}{20}sin(66t)}{(\frac{3}{7}sin(66t) + 1)} + \frac{1}{(\frac{3}{7}sin(66t) + 1)}\right)}{dx}\\=& - \frac{7}{20}(\frac{-(\frac{3}{7}cos(66t)*0 + 0)}{(\frac{3}{7}sin(66t) + 1)^{2}})sin(66t) - \frac{\frac{7}{20}cos(66t)*0}{(\frac{3}{7}sin(66t) + 1)} + (\frac{-(\frac{3}{7}cos(66t)*0 + 0)}{(\frac{3}{7}sin(66t) + 1)^{2}})\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!