There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-(arcsin(x))}{x} + ln(\frac{(1 - sqrt(1 - {x}^{2}))}{x}) + \frac{(arcsin(x))}{x} + ln(\frac{(1 + sqrt(1 - {x}^{2}))}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{-sqrt(-x^{2} + 1)}{x} + \frac{1}{x}) + ln(\frac{sqrt(-x^{2} + 1)}{x} + \frac{1}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{-sqrt(-x^{2} + 1)}{x} + \frac{1}{x}) + ln(\frac{sqrt(-x^{2} + 1)}{x} + \frac{1}{x})\right)}{dx}\\=&\frac{(\frac{--sqrt(-x^{2} + 1)}{x^{2}} - \frac{(-2x + 0)*\frac{1}{2}}{x(-x^{2} + 1)^{\frac{1}{2}}} + \frac{-1}{x^{2}})}{(\frac{-sqrt(-x^{2} + 1)}{x} + \frac{1}{x})} + \frac{(\frac{-sqrt(-x^{2} + 1)}{x^{2}} + \frac{(-2x + 0)*\frac{1}{2}}{x(-x^{2} + 1)^{\frac{1}{2}}} + \frac{-1}{x^{2}})}{(\frac{sqrt(-x^{2} + 1)}{x} + \frac{1}{x})}\\=&\frac{sqrt(-x^{2} + 1)}{(\frac{-sqrt(-x^{2} + 1)}{x} + \frac{1}{x})x^{2}} + \frac{1}{(\frac{-sqrt(-x^{2} + 1)}{x} + \frac{1}{x})(-x^{2} + 1)^{\frac{1}{2}}} - \frac{sqrt(-x^{2} + 1)}{(\frac{sqrt(-x^{2} + 1)}{x} + \frac{1}{x})x^{2}} - \frac{1}{(\frac{-sqrt(-x^{2} + 1)}{x} + \frac{1}{x})x^{2}} - \frac{1}{(\frac{sqrt(-x^{2} + 1)}{x} + \frac{1}{x})(-x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{(\frac{sqrt(-x^{2} + 1)}{x} + \frac{1}{x})x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!