There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ \frac{(5x - 3)}{(2x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5x}{(2x - 1)} - \frac{3}{(2x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5x}{(2x - 1)} - \frac{3}{(2x - 1)}\right)}{dx}\\=&5(\frac{-(2 + 0)}{(2x - 1)^{2}})x + \frac{5}{(2x - 1)} - 3(\frac{-(2 + 0)}{(2x - 1)^{2}})\\=&\frac{-10x}{(2x - 1)^{2}} + \frac{6}{(2x - 1)^{2}} + \frac{5}{(2x - 1)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ \frac{(5x + 2)}{(2x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5x}{(2x - 1)} + \frac{2}{(2x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5x}{(2x - 1)} + \frac{2}{(2x - 1)}\right)}{dx}\\=&5(\frac{-(2 + 0)}{(2x - 1)^{2}})x + \frac{5}{(2x - 1)} + 2(\frac{-(2 + 0)}{(2x - 1)^{2}})\\=&\frac{-10x}{(2x - 1)^{2}} - \frac{4}{(2x - 1)^{2}} + \frac{5}{(2x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!