There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(4{x}^{2} - 36x + 2 * {7}^{\frac{1}{2}} + {(16{x}^{4} - 128{x}^{2} + 2304)}^{\frac{1}{2}})x}{4} - 36\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} - 9x^{2} + \frac{1}{2}*7^{\frac{1}{2}}x + \frac{1}{4}(16x^{4} - 128x^{2} + 2304)^{\frac{1}{2}}x - 36\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} - 9x^{2} + \frac{1}{2}*7^{\frac{1}{2}}x + \frac{1}{4}(16x^{4} - 128x^{2} + 2304)^{\frac{1}{2}}x - 36\right)}{dx}\\=&3x^{2} - 9*2x + \frac{1}{2}*7^{\frac{1}{2}} + \frac{1}{4}(\frac{\frac{1}{2}(16*4x^{3} - 128*2x + 0)}{(16x^{4} - 128x^{2} + 2304)^{\frac{1}{2}}})x + \frac{1}{4}(16x^{4} - 128x^{2} + 2304)^{\frac{1}{2}} + 0\\=&3x^{2} - 18x + \frac{8x^{4}}{(16x^{4} - 128x^{2} + 2304)^{\frac{1}{2}}} - \frac{32x^{2}}{(16x^{4} - 128x^{2} + 2304)^{\frac{1}{2}}} + \frac{7^{\frac{1}{2}}}{2} + \frac{(16x^{4} - 128x^{2} + 2304)^{\frac{1}{2}}}{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!