There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (log_{a}^{{e}^{{({x}^{2} + 5x)}^{\frac{1}{2}}}} - \frac{{e}^{{(ln(x))}^{\frac{1}{2}}}x{e}^{{({x}^{3} + 2x)}^{\frac{1}{2}}}}{2} - ln({({x}^{3} + 2x)}^{\frac{1}{2}}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}} - \frac{1}{2}x{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}} - \frac{1}{2}x{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}})\right)}{dx}\\=&(\frac{(\frac{(({e}^{(x^{2} + 5x)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(2x + 5)}{(x^{2} + 5x)^{\frac{1}{2}}}))ln(e) + \frac{((x^{2} + 5x)^{\frac{1}{2}})(0)}{(e)})))}{({e}^{(x^{2} + 5x)^{\frac{1}{2}}})} - \frac{(0)log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}}}{(a)})}{(ln(a))}) - \frac{1}{2}{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - \frac{1}{2}x({e}^{ln^{\frac{1}{2}}(x)}((\frac{\frac{1}{2}}{ln^{\frac{1}{2}}(x)(x)})ln(e) + \frac{(ln^{\frac{1}{2}}(x))(0)}{(e)})){e}^{(x^{3} + 2x)^{\frac{1}{2}}} - \frac{1}{2}x{e}^{ln^{\frac{1}{2}}(x)}({e}^{(x^{3} + 2x)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}}))ln(e) + \frac{((x^{3} + 2x)^{\frac{1}{2}})(0)}{(e)})) - \frac{(\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}})}{((x^{3} + 2x)^{\frac{1}{2}})}\\=&\frac{x}{(x^{2} + 5x)^{\frac{1}{2}}ln(a)} + \frac{5}{2(x^{2} + 5x)^{\frac{1}{2}}ln(a)} - \frac{{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}}{4ln^{\frac{1}{2}}(x)} - \frac{{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}}{2} - \frac{3x^{3}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}{e}^{ln^{\frac{1}{2}}(x)}}{4(x^{3} + 2x)^{\frac{1}{2}}} - \frac{x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}{e}^{ln^{\frac{1}{2}}(x)}}{2(x^{3} + 2x)^{\frac{1}{2}}} - \frac{3x^{2}}{2(x^{3} + 2x)} - \frac{1}{(x^{3} + 2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!