There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(log_{a}^{{{e}^{({x}^{2} + 5x)}}^{\frac{1}{2}}} - {e}^{{(ln(x))}^{\frac{1}{2}}})}{(2x{e}^{{({x}^{3} + 2x)}^{\frac{1}{2}}} - ln({({x}^{3} + 2x)}^{\frac{1}{2}}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))} - \frac{{e}^{ln^{\frac{1}{2}}(x)}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))} - \frac{{e}^{ln^{\frac{1}{2}}(x)}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))}\right)}{dx}\\=&(\frac{-(2{e}^{(x^{3} + 2x)^{\frac{1}{2}}} + 2x({e}^{(x^{3} + 2x)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}}))ln(e) + \frac{((x^{3} + 2x)^{\frac{1}{2}})(0)}{(e)})) - \frac{(\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}})}{((x^{3} + 2x)^{\frac{1}{2}})})}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}})log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}} + \frac{(\frac{(\frac{(({e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}((\frac{1}{2}*2x + \frac{5}{2})ln(e) + \frac{(\frac{1}{2}x^{2} + \frac{5}{2}x)(0)}{(e)})))}{({e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)})} - \frac{(0)log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{(a)})}{(ln(a))})}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))} - (\frac{-(2{e}^{(x^{3} + 2x)^{\frac{1}{2}}} + 2x({e}^{(x^{3} + 2x)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}}))ln(e) + \frac{((x^{3} + 2x)^{\frac{1}{2}})(0)}{(e)})) - \frac{(\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}})}{((x^{3} + 2x)^{\frac{1}{2}})})}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}}){e}^{ln^{\frac{1}{2}}(x)} - \frac{({e}^{ln^{\frac{1}{2}}(x)}((\frac{\frac{1}{2}}{ln^{\frac{1}{2}}(x)(x)})ln(e) + \frac{(ln^{\frac{1}{2}}(x))(0)}{(e)}))}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))}\\=&\frac{-2{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}} - \frac{3x^{3}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)^{\frac{1}{2}}} - \frac{2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)^{\frac{1}{2}}} + \frac{3x^{2}log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{2(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)} + \frac{log_{a}^{{e}^{(\frac{1}{2}x^{2} + \frac{5}{2}x)}}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)} + \frac{x{e}^{(x^{2} + 5x)}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))ln(a)} + \frac{5{e}^{(x^{2} + 5x)}}{2(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))ln(a)} + \frac{2{e}^{(x^{3} + 2x)^{\frac{1}{2}}}{e}^{ln^{\frac{1}{2}}(x)}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}} + \frac{3x^{3}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}{e}^{ln^{\frac{1}{2}}(x)}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)^{\frac{1}{2}}} + \frac{2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}{e}^{ln^{\frac{1}{2}}(x)}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)^{\frac{1}{2}}} - \frac{3x^{2}{e}^{ln^{\frac{1}{2}}(x)}}{2(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)} - \frac{{e}^{ln^{\frac{1}{2}}(x)}}{(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))^{2}(x^{3} + 2x)} - \frac{{e}^{ln^{\frac{1}{2}}(x)}}{2(2x{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}}))xln^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!