There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 6.537 + (\frac{5.4044}{(11.36sqrt(\frac{3.1415926}{2}))})e^{-2{(\frac{(x - 51.2)}{11.36})}^{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.475739436619718e^{-0.1760563380282x + 9.01408450704225}}{sqrt(1.5707963)} + 6.537\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.475739436619718e^{-0.1760563380282x + 9.01408450704225}}{sqrt(1.5707963)} + 6.537\right)}{dx}\\=&\frac{0.475739436619718e^{-0.1760563380282x + 9.01408450704225}(-0.1760563380282 + 0)}{sqrt(1.5707963)} + \frac{0.475739436619718e^{-0.1760563380282x + 9.01408450704225}*-*0*0.5*1.5707963^{\frac{1}{2}}}{(1.5707963)} + 0\\=&\frac{-0.0837569430669e^{-0.1760563380282x + 9.01408450704225}}{sqrt(1.5707963)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!