There are 3 questions in this calculation: for each question, the 4 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ 4th\ derivative\ of\ function\ sin(e)\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(e)\right)}{dn}\\=&cos(e)*0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dn}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dn}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dn}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ 4th\ derivative\ of\ function\ cos(ine)\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(ine)\right)}{dn}\\=&-sin(ine)(ie + in*0)\\=&-iesin(ine)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -iesin(ine)\right)}{dn}\\=&-i*0sin(ine) - iecos(ine)(ie + in*0)\\=& - i^{2}e^{2}cos(ine)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - i^{2}e^{2}cos(ine)\right)}{dn}\\=& - i^{2}*2e*0cos(ine) - i^{2}e^{2}*-sin(ine)(ie + in*0)\\=&i^{3}e^{3}sin(ine)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( i^{3}e^{3}sin(ine)\right)}{dn}\\=&i^{3}*3e^{2}*0sin(ine) + i^{3}e^{3}cos(ine)(ie + in*0)\\=&i^{4}e^{4}cos(ine)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ 4th\ derivative\ of\ function\ tan(ge^{n}t)\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = tan(gte^{n})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(gte^{n})\right)}{dn}\\=&sec^{2}(gte^{n})(gte^{n})\\=>e^{n}sec^{2}(gte^{n})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( gte^{n}sec^{2}(gte^{n})\right)}{dn}\\=>e^{n}sec^{2}(gte^{n}) + gte^{n}*2sec^{2}(gte^{n})tan(gte^{n})gte^{n}\\=>e^{n}sec^{2}(gte^{n}) + 2g^{2}t^{2}e^{{n}*{2}}tan(gte^{n})sec^{2}(gte^{n})\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( gte^{n}sec^{2}(gte^{n}) + 2g^{2}t^{2}e^{{n}*{2}}tan(gte^{n})sec^{2}(gte^{n})\right)}{dn}\\=>e^{n}sec^{2}(gte^{n}) + gte^{n}*2sec^{2}(gte^{n})tan(gte^{n})gte^{n} + 2g^{2}t^{2}*2e^{n}e^{n}tan(gte^{n})sec^{2}(gte^{n}) + 2g^{2}t^{2}e^{{n}*{2}}sec^{2}(gte^{n})(gte^{n})sec^{2}(gte^{n}) + 2g^{2}t^{2}e^{{n}*{2}}tan(gte^{n})*2sec^{2}(gte^{n})tan(gte^{n})gte^{n}\\=>e^{n}sec^{2}(gte^{n}) + 6g^{2}t^{2}e^{{n}*{2}}tan(gte^{n})sec^{2}(gte^{n}) + 2g^{3}t^{3}e^{{n}*{3}}sec^{4}(gte^{n}) + 4g^{3}t^{3}e^{{n}*{3}}tan^{2}(gte^{n})sec^{2}(gte^{n})\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( gte^{n}sec^{2}(gte^{n}) + 6g^{2}t^{2}e^{{n}*{2}}tan(gte^{n})sec^{2}(gte^{n}) + 2g^{3}t^{3}e^{{n}*{3}}sec^{4}(gte^{n}) + 4g^{3}t^{3}e^{{n}*{3}}tan^{2}(gte^{n})sec^{2}(gte^{n})\right)}{dn}\\=>e^{n}sec^{2}(gte^{n}) + gte^{n}*2sec^{2}(gte^{n})tan(gte^{n})gte^{n} + 6g^{2}t^{2}*2e^{n}e^{n}tan(gte^{n})sec^{2}(gte^{n}) + 6g^{2}t^{2}e^{{n}*{2}}sec^{2}(gte^{n})(gte^{n})sec^{2}(gte^{n}) + 6g^{2}t^{2}e^{{n}*{2}}tan(gte^{n})*2sec^{2}(gte^{n})tan(gte^{n})gte^{n} + 2g^{3}t^{3}*3e^{{n}*{2}}e^{n}sec^{4}(gte^{n}) + 2g^{3}t^{3}e^{{n}*{3}}*4sec^{4}(gte^{n})tan(gte^{n})gte^{n} + 4g^{3}t^{3}*3e^{{n}*{2}}e^{n}tan^{2}(gte^{n})sec^{2}(gte^{n}) + 4g^{3}t^{3}e^{{n}*{3}}*2tan(gte^{n})sec^{2}(gte^{n})(gte^{n})sec^{2}(gte^{n}) + 4g^{3}t^{3}e^{{n}*{3}}tan^{2}(gte^{n})*2sec^{2}(gte^{n})tan(gte^{n})gte^{n}\\=>e^{n}sec^{2}(gte^{n}) + 16g^{4}t^{4}e^{{n}*{4}}tan(gte^{n})sec^{4}(gte^{n}) + 14g^{2}t^{2}e^{{n}*{2}}tan(gte^{n})sec^{2}(gte^{n}) + 12g^{3}t^{3}e^{{n}*{3}}sec^{4}(gte^{n}) + 24g^{3}t^{3}e^{{n}*{3}}tan^{2}(gte^{n})sec^{2}(gte^{n}) + 8g^{4}t^{4}e^{{n}*{4}}tan^{3}(gte^{n})sec^{2}(gte^{n})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!