There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1.47x + 1.42(1.5 - x)(131 - {(7225 + {(1.5 - x)}^{2})}^{0.5}){(7225 + {(1.5 - x)}^{2})}^{-0.5} + 1.42(36.5 - x)(138.5 - {(7225 + {(36.5 - x)}^{2})}^{0.5}){(7225 + {(36.5 - x)}^{2})}^{-0.5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 1.47x + \frac{1.42(-x + 7226.5)^{\frac{1}{2}}x}{(-x + 7226.5)^{\frac{1}{2}}} - \frac{186.02x}{(-x + 7226.5)^{\frac{1}{2}}} + \frac{1.42(-x + 7261.5)^{\frac{1}{2}}x}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{51.83(-x + 7261.5)^{\frac{1}{2}}}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{196.67x}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{2.13(-x + 7226.5)^{\frac{1}{2}}}{(-x + 7226.5)^{\frac{1}{2}}} + \frac{7178.455}{(-x + 7261.5)^{\frac{1}{2}}} + \frac{279.03}{(-x + 7226.5)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 1.47x + \frac{1.42(-x + 7226.5)^{\frac{1}{2}}x}{(-x + 7226.5)^{\frac{1}{2}}} - \frac{186.02x}{(-x + 7226.5)^{\frac{1}{2}}} + \frac{1.42(-x + 7261.5)^{\frac{1}{2}}x}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{51.83(-x + 7261.5)^{\frac{1}{2}}}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{196.67x}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{2.13(-x + 7226.5)^{\frac{1}{2}}}{(-x + 7226.5)^{\frac{1}{2}}} + \frac{7178.455}{(-x + 7261.5)^{\frac{1}{2}}} + \frac{279.03}{(-x + 7226.5)^{\frac{1}{2}}}\right)}{dx}\\=&1.47 + \frac{1.42(\frac{0.5(-1 + 0)}{(-x + 7226.5)^{\frac{1}{2}}})x}{(-x + 7226.5)^{\frac{1}{2}}} + 1.42(-x + 7226.5)^{\frac{1}{2}}(\frac{-0.5(-1 + 0)}{(-x + 7226.5)^{\frac{3}{2}}})x + \frac{1.42(-x + 7226.5)^{\frac{1}{2}}}{(-x + 7226.5)^{\frac{1}{2}}} - 186.02(\frac{-0.5(-1 + 0)}{(-x + 7226.5)^{\frac{3}{2}}})x - \frac{186.02}{(-x + 7226.5)^{\frac{1}{2}}} + \frac{1.42(\frac{0.5(-1 + 0)}{(-x + 7261.5)^{\frac{1}{2}}})x}{(-x + 7261.5)^{\frac{1}{2}}} + 1.42(-x + 7261.5)^{\frac{1}{2}}(\frac{-0.5(-1 + 0)}{(-x + 7261.5)^{\frac{3}{2}}})x + \frac{1.42(-x + 7261.5)^{\frac{1}{2}}}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{51.83(\frac{0.5(-1 + 0)}{(-x + 7261.5)^{\frac{1}{2}}})}{(-x + 7261.5)^{\frac{1}{2}}} - 51.83(-x + 7261.5)^{\frac{1}{2}}(\frac{-0.5(-1 + 0)}{(-x + 7261.5)^{\frac{3}{2}}}) - 196.67(\frac{-0.5(-1 + 0)}{(-x + 7261.5)^{\frac{3}{2}}})x - \frac{196.67}{(-x + 7261.5)^{\frac{1}{2}}} - \frac{2.13(\frac{0.5(-1 + 0)}{(-x + 7226.5)^{\frac{1}{2}}})}{(-x + 7226.5)^{\frac{1}{2}}} - 2.13(-x + 7226.5)^{\frac{1}{2}}(\frac{-0.5(-1 + 0)}{(-x + 7226.5)^{\frac{3}{2}}}) + 7178.455(\frac{-0.5(-1 + 0)}{(-x + 7261.5)^{\frac{3}{2}}}) + 279.03(\frac{-0.5(-1 + 0)}{(-x + 7226.5)^{\frac{3}{2}}})\\=&\frac{-0.71x}{(-x + 7226.5)^{\frac{1}{2}}(-x + 7226.5)^{\frac{1}{2}}} + \frac{0.71(-x + 7226.5)^{\frac{1}{2}}x}{(-x + 7226.5)^{\frac{3}{2}}} - \frac{0.71x}{(-x + 7261.5)^{\frac{1}{2}}(-x + 7261.5)^{\frac{1}{2}}} - \frac{93.01x}{(-x + 7226.5)^{\frac{3}{2}}} + \frac{0.71(-x + 7261.5)^{\frac{1}{2}}x}{(-x + 7261.5)^{\frac{3}{2}}} + \frac{1.42(-x + 7226.5)^{\frac{1}{2}}}{(-x + 7226.5)^{\frac{1}{2}}} + \frac{1.42(-x + 7261.5)^{\frac{1}{2}}}{(-x + 7261.5)^{\frac{1}{2}}} + \frac{25.915}{(-x + 7261.5)^{\frac{1}{2}}(-x + 7261.5)^{\frac{1}{2}}} - \frac{25.915(-x + 7261.5)^{\frac{1}{2}}}{(-x + 7261.5)^{\frac{3}{2}}} - \frac{98.335x}{(-x + 7261.5)^{\frac{3}{2}}} + \frac{1.065}{(-x + 7226.5)^{\frac{1}{2}}(-x + 7226.5)^{\frac{1}{2}}} - \frac{1.065(-x + 7226.5)^{\frac{1}{2}}}{(-x + 7226.5)^{\frac{3}{2}}} - \frac{186.02}{(-x + 7226.5)^{\frac{1}{2}}} - \frac{196.67}{(-x + 7261.5)^{\frac{1}{2}}} + \frac{3589.2275}{(-x + 7261.5)^{\frac{3}{2}}} + \frac{139.515}{(-x + 7226.5)^{\frac{3}{2}}} + 1.47\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!