There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2arcsin(\frac{L}{(2(\frac{({L}^{2} + 4{x}^{2})}{(8x)}))})(\frac{({L}^{2} + 4{x}^{2})}{(8x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{4}L^{2}arcsin(\frac{4Lx}{(L^{2} + 4x^{2})})}{x} + xarcsin(\frac{4Lx}{(L^{2} + 4x^{2})})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{4}L^{2}arcsin(\frac{4Lx}{(L^{2} + 4x^{2})})}{x} + xarcsin(\frac{4Lx}{(L^{2} + 4x^{2})})\right)}{dx}\\=&\frac{\frac{1}{4}L^{2}*-arcsin(\frac{4Lx}{(L^{2} + 4x^{2})})}{x^{2}} + \frac{\frac{1}{4}L^{2}(\frac{(4(\frac{-(0 + 4*2x)}{(L^{2} + 4x^{2})^{2}})Lx + \frac{4L}{(L^{2} + 4x^{2})})}{((1 - (\frac{4Lx}{(L^{2} + 4x^{2})})^{2})^{\frac{1}{2}})})}{x} + arcsin(\frac{4Lx}{(L^{2} + 4x^{2})}) + x(\frac{(4(\frac{-(0 + 4*2x)}{(L^{2} + 4x^{2})^{2}})Lx + \frac{4L}{(L^{2} + 4x^{2})})}{((1 - (\frac{4Lx}{(L^{2} + 4x^{2})})^{2})^{\frac{1}{2}})})\\=&\frac{-L^{2}arcsin(\frac{4Lx}{(L^{2} + 4x^{2})})}{4x^{2}} - \frac{8L^{3}x}{(\frac{-16L^{2}x^{2}}{(L^{2} + 4x^{2})^{2}} + 1)^{\frac{1}{2}}(L^{2} + 4x^{2})^{2}} + \frac{L^{3}}{(\frac{-16L^{2}x^{2}}{(L^{2} + 4x^{2})^{2}} + 1)^{\frac{1}{2}}(L^{2} + 4x^{2})x} + arcsin(\frac{4Lx}{(L^{2} + 4x^{2})}) - \frac{32Lx^{3}}{(\frac{-16L^{2}x^{2}}{(L^{2} + 4x^{2})^{2}} + 1)^{\frac{1}{2}}(L^{2} + 4x^{2})^{2}} + \frac{4Lx}{(\frac{-16L^{2}x^{2}}{(L^{2} + 4x^{2})^{2}} + 1)^{\frac{1}{2}}(L^{2} + 4x^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!