There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -9000{\frac{1}{(1 + x)}}^{0} + 12000{\frac{1}{(1 + x)}}^{1} + 9870{\frac{1}{(1 + x)}}^{2} - 16000{\frac{1}{(1 + x)}}^{3} + 3000{\frac{1}{(1 + x)}}^{4} + 400{\frac{1}{(1 + x)}}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 9000x + \frac{400}{(x + 1)^{5}} + \frac{3000}{(x + 1)^{4}} - \frac{16000}{(x + 1)^{3}} + \frac{9870}{(x + 1)^{2}} + \frac{12000}{(x + 1)} - 9000\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 9000x + \frac{400}{(x + 1)^{5}} + \frac{3000}{(x + 1)^{4}} - \frac{16000}{(x + 1)^{3}} + \frac{9870}{(x + 1)^{2}} + \frac{12000}{(x + 1)} - 9000\right)}{dx}\\=& - 9000 + 400(\frac{-5(1 + 0)}{(x + 1)^{6}}) + 3000(\frac{-4(1 + 0)}{(x + 1)^{5}}) - 16000(\frac{-3(1 + 0)}{(x + 1)^{4}}) + 9870(\frac{-2(1 + 0)}{(x + 1)^{3}}) + 12000(\frac{-(1 + 0)}{(x + 1)^{2}}) + 0\\=& - \frac{12000}{(x + 1)^{5}} + \frac{48000}{(x + 1)^{4}} - \frac{19740}{(x + 1)^{3}} - \frac{12000}{(x + 1)^{2}} - \frac{2000}{(x + 1)^{6}} - 9000\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!