There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{1}{10}cos(10 * {5}^{\frac{1}{2}}x) + \frac{{5}^{\frac{1}{2}}sin(10 * {5}^{\frac{1}{2}}x)}{25}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{10}cos(10*5^{\frac{1}{2}}x) + 5^{\frac{1}{2}}*\frac{1}{25}sin(10*5^{\frac{1}{2}}x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{10}cos(10*5^{\frac{1}{2}}x) + 5^{\frac{1}{2}}*\frac{1}{25}sin(10*5^{\frac{1}{2}}x)\right)}{dx}\\=&\frac{1}{10}*-sin(10*5^{\frac{1}{2}}x)*10*5^{\frac{1}{2}} + 5^{\frac{1}{2}}*\frac{1}{25}cos(10*5^{\frac{1}{2}}x)*10*5^{\frac{1}{2}}\\=&-5^{\frac{1}{2}}sin(10*5^{\frac{1}{2}}x) + 2cos(10*5^{\frac{1}{2}}x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -5^{\frac{1}{2}}sin(10*5^{\frac{1}{2}}x) + 2cos(10*5^{\frac{1}{2}}x)\right)}{dx}\\=&-5^{\frac{1}{2}}cos(10*5^{\frac{1}{2}}x)*10*5^{\frac{1}{2}} + 2*-sin(10*5^{\frac{1}{2}}x)*10*5^{\frac{1}{2}}\\=&-50cos(10*5^{\frac{1}{2}}x) - 20*5^{\frac{1}{2}}sin(10*5^{\frac{1}{2}}x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -50cos(10*5^{\frac{1}{2}}x) - 20*5^{\frac{1}{2}}sin(10*5^{\frac{1}{2}}x)\right)}{dx}\\=&-50*-sin(10*5^{\frac{1}{2}}x)*10*5^{\frac{1}{2}} - 20*5^{\frac{1}{2}}cos(10*5^{\frac{1}{2}}x)*10*5^{\frac{1}{2}}\\=&500*5^{\frac{1}{2}}sin(10*5^{\frac{1}{2}}x) - 1000cos(10*5^{\frac{1}{2}}x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!