There are 1 questions in this calculation: for each question, the 1 derivative of c is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ((\frac{(a)(b)({(\frac{(1 - c)}{(1 - a)})}^{(1 - d)})}{(1 - d)}) + (\frac{(1 - a)({(\frac{e(1 - c)}{(1 - a)})}^{(1 - d)})}{(1 - d)}))\ with\ respect\ to\ c:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ab(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})^{(-d + 1)}}{(-d + 1)} - \frac{a(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}}{(-d + 1)} + \frac{(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}}{(-d + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ab(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})^{(-d + 1)}}{(-d + 1)} - \frac{a(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}}{(-d + 1)} + \frac{(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}}{(-d + 1)}\right)}{dc}\\=&(\frac{-(0 + 0)}{(-d + 1)^{2}})ab(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})^{(-d + 1)} + \frac{ab((\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})^{(-d + 1)}((0 + 0)ln(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)}) + \frac{(-d + 1)(-(\frac{-(0 + 0)}{(-a + 1)^{2}})c - \frac{1}{(-a + 1)} + (\frac{-(0 + 0)}{(-a + 1)^{2}}))}{(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})}))}{(-d + 1)} - (\frac{-(0 + 0)}{(-d + 1)^{2}})a(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)} - \frac{a((\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}((0 + 0)ln(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)}) + \frac{(-d + 1)(-(\frac{-(0 + 0)}{(-a + 1)^{2}})ce - \frac{e}{(-a + 1)} - \frac{c*0}{(-a + 1)} + (\frac{-(0 + 0)}{(-a + 1)^{2}})e + \frac{0}{(-a + 1)})}{(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})}))}{(-d + 1)} + (\frac{-(0 + 0)}{(-d + 1)^{2}})(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)} + \frac{((\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}((0 + 0)ln(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)}) + \frac{(-d + 1)(-(\frac{-(0 + 0)}{(-a + 1)^{2}})ce - \frac{e}{(-a + 1)} - \frac{c*0}{(-a + 1)} + (\frac{-(0 + 0)}{(-a + 1)^{2}})e + \frac{0}{(-a + 1)})}{(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})}))}{(-d + 1)}\\=&\frac{abd(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})^{(-d + 1)}}{(-d + 1)(-a + 1)(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})} - \frac{ab(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})^{(-d + 1)}}{(-d + 1)(-a + 1)(\frac{-c}{(-a + 1)} + \frac{1}{(-a + 1)})} - \frac{ad(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}e}{(-d + 1)(-a + 1)(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})} + \frac{a(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}e}{(-d + 1)(-a + 1)(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})} + \frac{d(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}e}{(-d + 1)(-a + 1)(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})} - \frac{(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})^{(-d + 1)}e}{(-d + 1)(-a + 1)(\frac{-ce}{(-a + 1)} + \frac{e}{(-a + 1)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!