There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (sqrt({(\frac{(sqrt(x) + 1)}{2})}^{2} + \frac{9}{16}) - \frac{(sqrt(x) + 1)}{2})(sqrt(x) + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})sqrt(x) - \frac{1}{2}sqrt(x)^{2} + sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16}) - sqrt(x) - \frac{1}{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})sqrt(x) - \frac{1}{2}sqrt(x)^{2} + sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16}) - sqrt(x) - \frac{1}{2}\right)}{dx}\\=&\frac{(\frac{\frac{1}{4}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)*\frac{1}{2}sqrt(x)}{(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}} + \frac{sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})*\frac{1}{2}}{(x)^{\frac{1}{2}}} - \frac{\frac{1}{2}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{(\frac{\frac{1}{4}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)*\frac{1}{2}}{(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}} - \frac{\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0\\=&\frac{sqrt(x)}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}} + \frac{sqrt(x)}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})}{2x^{\frac{1}{2}}} + \frac{1}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{1}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}} - \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sqrt(x)}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}} + \frac{sqrt(x)}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})}{2x^{\frac{1}{2}}} + \frac{1}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{1}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}} - \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(\frac{\frac{1}{4}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}})sqrt(x)}{8} + \frac{\frac{1}{2}}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}(x)^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(\frac{\frac{1}{4}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}})sqrt(x)}{8x^{\frac{1}{2}}} + \frac{\frac{-1}{2}sqrt(x)}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{3}{2}}} + \frac{\frac{1}{2}}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{1}{2}}(x)^{\frac{1}{2}}} + \frac{\frac{-1}{2}sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})}{2x^{\frac{3}{2}}} + \frac{(\frac{\frac{1}{4}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)*\frac{1}{2}}{2x^{\frac{1}{2}}(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(\frac{\frac{1}{4}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}})}{8x^{\frac{1}{2}}} + \frac{\frac{-1}{2}}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{3}{2}}} + \frac{(\frac{\frac{-1}{2}(\frac{\frac{1}{4}*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}})}{8} - \frac{\frac{-1}{2}}{2x^{\frac{3}{2}}} + 0\\=&\frac{-sqrt(x)}{64(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}} - \frac{sqrt(x)}{32(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}x^{\frac{1}{2}}} - \frac{sqrt(x)}{64(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}x} - \frac{sqrt(x)}{16(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{3}{2}}} + \frac{1}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x} + \frac{1}{8(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{1}{2}}} - \frac{sqrt(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})}{4x^{\frac{3}{2}}} - \frac{1}{64(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}x} - \frac{1}{32(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}x^{\frac{1}{2}}} - \frac{1}{16(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{1}{2}}x^{\frac{3}{2}}} - \frac{1}{64(\frac{1}{4}sqrt(x)^{2} + \frac{1}{2}sqrt(x) + \frac{13}{16})^{\frac{3}{2}}} + \frac{1}{4x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!