There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{1}{(1 + \frac{1.89(50 * {10}^{-6}*3*3.14){10}^{-7}}{({{10}^{-5}}^{2}*100*1.4*1000{x}^{2})})})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(\frac{0.063585}{x} + 1)(\frac{0.063585}{x} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(\frac{0.063585}{x} + 1)(\frac{0.063585}{x} + 1)}\right)}{dx}\\=&\frac{(\frac{-(\frac{0.063585*-1}{x^{2}} + 0)}{(\frac{0.063585}{x} + 1)^{2}})}{(\frac{0.063585}{x} + 1)} + \frac{(\frac{-(\frac{0.063585*-1}{x^{2}} + 0)}{(\frac{0.063585}{x} + 1)^{2}})}{(\frac{0.063585}{x} + 1)}\\=&\frac{0.063585}{(\frac{0.063585}{x} + 1)(\frac{0.063585}{x} + 1)(\frac{0.063585}{x} + 1)x^{2}} + \frac{0.063585}{(\frac{0.063585}{x} + 1)(\frac{0.063585}{x} + 1)(\frac{0.063585}{x} + 1)x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!