There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -e^{-9}{x}^{6} - 4e^{-7}{x}^{5} + 0.0001{x}^{4} - 0.0092{x}^{3} + 0.3564{x}^{2} - 8.9579x + 293.05\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -x^{6}e^{-9} - 4x^{5}e^{-7} + 0.0001x^{4} - 0.0092x^{3} + 0.3564x^{2} - 8.9579x + 293.05\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -x^{6}e^{-9} - 4x^{5}e^{-7} + 0.0001x^{4} - 0.0092x^{3} + 0.3564x^{2} - 8.9579x + 293.05\right)}{dx}\\=&-*6x^{5}e^{-9} - x^{6}e^{-9}*0 - 4*5x^{4}e^{-7} - 4x^{5}e^{-7}*0 + 0.0001*4x^{3} - 0.0092*3x^{2} + 0.3564*2x - 8.9579 + 0\\=&-6x^{5}e^{-9} - 20x^{4}e^{-7} + 0.0004x^{3} - 0.0276x^{2} + 0.7128x - 8.9579\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!