There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ ln(x) - lg(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x) - lg(x)\right)}{dx}\\=&\frac{1}{(x)} - \frac{1}{ln{10}(x)}\\=& - \frac{1}{xln{10}} + \frac{1}{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ lg(x) - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(x) - ln(x)\right)}{dx}\\=&\frac{1}{ln{10}(x)} - \frac{1}{(x)}\\=&\frac{1}{xln{10}} - \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!