| 8 | ÷ | ( | 3 | x | − | 3 | ) | − | ( | 2 | + | x | ) | ÷ | ( | x | − | 1 | ) | + | 5 | ÷ | ( | 2 | − | 2 | x | ) | − | 5 | ÷ | 18 | = | 0 |
| Multiply both sides of the equation by: | ( | 3 | x | − | 3 | ) |
| 8 | − | ( | 2 | + | x | ) | ÷ | ( | x | − | 1 | ) | × | ( | 3 | x | − | 3 | ) | + | 5 | ÷ | ( | 2 | − | 2 | x | ) | × | ( | 3 | x | − | 3 | ) | − | 5 | ÷ | 18 | × | ( | 3 | x | − | 3 | ) | = | 0 |
| 8 | − | 2 | ÷ | ( | x | − | 1 | ) | × | ( | 3 | x | − | 3 | ) | − | x | ÷ | ( | x | − | 1 | ) | × | ( | 3 | x | − | 3 | ) | + | 5 | ÷ | ( | 2 | − | 2 | x | ) | × | ( | 3 | x | − | 3 | ) | − | 5 | ÷ | 18 | = | 0 |
| 8 | − | 2 | ÷ | ( | x | − | 1 | ) | × | ( | 3 | x | − | 3 | ) | − | x | ÷ | ( | x | − | 1 | ) | × | ( | 3 | x | − | 3 | ) | + | 5 | ÷ | ( | 2 | − | 2 | x | ) | × | ( | 3 | x | − | 3 | ) | − | 5 18 | ( | 3 | x | − | 3 | ) | = | 0 |
| Multiply both sides of the equation by: | ( | x | − | 1 | ) |
| 8 | ( | x | − | 1 | ) | − | 2 | ( | 3 | x | − | 3 | ) | − | x | ( | 3 | x | − | 3 | ) | + | 5 | ÷ | ( | 2 | − | 2 | x | ) | × | ( | 3 | x | − | 3 | ) | ( | x | − | 1 | ) | − | 5 18 | ( | 3 | x | − | 3 | ) | = | 0 |
| 8 | x | − | 8 | × | 1 | − | 2 | ( | 3 | x | − | 3 | ) | − | x | ( | 3 | x | − | 3 | ) | + | 5 | ÷ | ( | 2 | − | 2 | x | ) | × | ( | 3 | x | − | 3 | ) | ( | x | − | 1 | ) | = | 0 |
| 8 | x | − | 8 | − | 2 | ( | 3 | x | − | 3 | ) | − | x | ( | 3 | x | − | 3 | ) | + | 5 | ÷ | ( | 2 | − | 2 | x | ) | × | ( | 3 | x | − | 3 | ) | ( | x | − | 1 | ) | − | 5 18 | = | 0 |
| Multiply both sides of the equation by: | ( | 2 | − | 2 | x | ) |
| 8 | x | ( | 2 | − | 2 | x | ) | − | 8 | ( | 2 | − | 2 | x | ) | − | 2 | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | − | x | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | + | 5 | = | 0 |
| 8 | x | × | 2 | − | 8 | x | × | 2 | x | − | 8 | ( | 2 | − | 2 | x | ) | − | 2 | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | = | 0 |
| 16 | x | − | 16 | x | x | − | 8 | ( | 2 | − | 2 | x | ) | − | 2 | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | − | x | ( | 3 | x | − | 3 | ) | = | 0 |
| 16 | x | − | 16 | x | x | − | 8 | × | 2 | + | 8 | × | 2 | x | − | 2 | ( | 3 | x | − | 3 | ) | = | 0 |
| 16 | x | − | 16 | x | x | − | 16 | + | 16 | x | − | 2 | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | − | x | = | 0 |
| 32 | x | − | 16 | x | x | − | 16 | − | 2 | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | − | x | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | = | 0 |
| 32 | x | − | 16 | x | x | − | 16 | − | 2 | × | 3 | x | ( | 2 | − | 2 | x | ) | + | 2 | × | 3 | = | 0 |
| 32 | x | − | 16 | x | x | − | 16 | − | 6 | x | ( | 2 | − | 2 | x | ) | + | 6 | ( | 2 | − | 2 | x | ) | − | x | = | 0 |
| 32 | x | − | 16 | x | x | − | 16 | − | 6 | x | × | 2 | + | 6 | x | × | 2 | = | 0 |
| 32 | x | − | 16 | x | x | − | 16 | − | 12 | x | + | 12 | x | x | + | 6 | = | 0 |
| 20 | x | − | 16 | x | x | − | 16 | + | 12 | x | x | + | 6 | ( | 2 | − | 2 | x | ) | − | x | = | 0 |
| 20 | x | − | 16 | x | x | − | 16 | + | 12 | x | x | + | 6 | × | 2 | − | 6 | = | 0 |
| 20 | x | − | 16 | x | x | − | 16 | + | 12 | x | x | + | 12 | − | 12 | x | = | 0 |
| 8 | x | − | 16 | x | x | − | 4 | + | 12 | x | x | − | x | ( | 3 | x | − | 3 | ) | ( | 2 | − | 2 | x | ) | = | 0 |
| 8 | x | − | 16 | x | x | − | 4 | + | 12 | x | x | − | x | × | 3 | x | = | 0 |
| 8 | x | − | 16 | x | x | − | 4 | + | 12 | x | x | − | x | × | 3 | x | = | 0 |