Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (150-140)/(1.11-x) = (140-100)/(x-1.23) .
    Question type: Equation
    Solution:Original question:
     (150140) ÷ (
111
100
x ) = (140100) ÷ ( x
123
100
)
     Multiply both sides of the equation by:(
111
100
x ) ,  ( x
123
100
)
     (150140)( x
123
100
) = (140100)(
111
100
x )
    Remove a bracket on the left of the equation::
     150( x
123
100
)140( x
123
100
) = (140100)(
111
100
x )
    Remove a bracket on the right of the equation::
     150( x
123
100
)140( x
123
100
) = 140(
111
100
x )100(
111
100
x )
    Remove a bracket on the left of the equation:
     150 x 150 ×
123
100
140( x
123
100
) = 140(
111
100
x )100(
111
100
x )
    Remove a bracket on the right of the equation::
     150 x 150 ×
123
100
140( x
123
100
) = 140 ×
111
100
140 x 100(
111
100
x )
    The equation is reduced to :
     150 x
369
2
140( x
123
100
) =
777
5
140 x 100(
111
100
x )
    Remove a bracket on the left of the equation:
     150 x
369
2
140 x + 140 ×
123
100
=
777
5
140 x 100(
111
100
x )
    Remove a bracket on the right of the equation::
     150 x
369
2
140 x + 140 ×
123
100
=
777
5
140 x 100 ×
111
100
+ 100 x
    The equation is reduced to :
     150 x
369
2
140 x +
861
5
=
777
5
140 x 111 + 100 x
    The equation is reduced to :
     10 x
123
10
=
222
5
40 x

    Transposition :
     10 x + 40 x =
222
5
+
123
10

    Combine the items on the left of the equation:
     50 x =
222
5
+
123
10

    Combine the items on the right of the equation:
     50 x =
567
10

    The coefficient of the unknown number is reduced to 1 :
      x =
567
10
÷ 50
        =
567
10
×
1
50

    We obtained :
      x =
567
500
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1.134



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。