Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x/176)+(1.049-x)/397.5 = 0.00508 .
    Question type: Equation
    Solution:Original question:
     ( x ÷ 176) + (
1049
1000
x ) ÷
795
2
=
127
25000
    Remove the bracket on the left of the equation:
     Left side of the equation = x ÷ 176 + (
1049
1000
x ) ×
2
795
                                             =
1
176
x +
1049
1000
×
2
795
x ×
2
795
                                             =
1
176
x +
1049
397500
x ×
2
795
                                             =
443
139920
x +
1049
397500
    The equation is transformed into :
     
443
139920
x +
1049
397500
=
127
25000

    Transposition :
     
443
139920
x =
127
25000
1049
397500

    Combine the items on the right of the equation:
     
443
139920
x =
9703
3975000

    The coefficient of the unknown number is reduced to 1 :
      x =
9703
3975000
÷
443
139920
        =
9703
3975000
×
139920
443
        =
9703
33125
×
1166
443

    We obtained :
      x =
11313698
14674375
    This is the solution of the equation.

    By reducing fraction, we can get:
      x =
213466
276875

    Convert the result to decimal form :
      x = 0.770983



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。