Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/d+1/(d+25)+1/(d+8) = 1/(d+71.42) .
    Question type: Equation
    Solution:Original question:
     1 ÷ d + 1 ÷ ( d + 25) + 1 ÷ ( d + 8) = 1 ÷ ( d +
3571
50
)
     Multiply both sides of the equation by: d  ,  ( d +
3571
50
)
     1( d +
3571
50
) + 1 ÷ ( d + 25) × d ( d +
3571
50
) + 1 ÷ ( d + 8) × d ( d +
3571
50
) = 1 d
    Remove a bracket on the left of the equation::
     1 d + 1 ×
3571
50
+ 1 ÷ ( d + 25) × d ( d +
3571
50
) + 1 ÷ ( d + 8) × d ( d +
3571
50
) = 1 d
    The equation is reduced to :
     1 d +
3571
50
+ 1 ÷ ( d + 25) × d ( d +
3571
50
) + 1 ÷ ( d + 8) × d ( d +
3571
50
) = 1 d
     Multiply both sides of the equation by:( d + 25)
     1 d ( d + 25) +
3571
50
( d + 25) + 1 d ( d +
3571
50
) + 1 ÷ ( d + 8) × d ( d +
3571
50
) = 1 d ( d + 25)
    Remove a bracket on the left of the equation:
     1 d d + 1 d × 25 +
3571
50
( d + 25) + 1 d ( d +
3571
50
) + 1 = 1 d ( d + 25)
    Remove a bracket on the right of the equation::
     1 d d + 1 d × 25 +
3571
50
( d + 25) + 1 d ( d +
3571
50
) + 1 = 1 d d + 1 d × 25
    The equation is reduced to :
     1 d d + 25 d +
3571
50
( d + 25) + 1 d ( d +
3571
50
) + 1 ÷ ( d + 8) = 1 d d + 25 d
     Multiply both sides of the equation by:( d + 8)
     1 d d ( d + 8) + 25 d ( d + 8) +
3571
50
( d + 25)( d + 8) + 1 d = 1 d d ( d + 8) + 25 d ( d + 8)
    Remove a bracket on the left of the equation:
     1 d d d + 1 d d × 8 + 25 d ( d + 8) +
3571
50
= 1 d d ( d + 8) + 25 d ( d + 8)
    Remove a bracket on the right of the equation::
     1 d d d + 1 d d × 8 + 25 d ( d + 8) +
3571
50
= 1 d d d + 1 d d × 8 + 25 d ( d + 8)
    The equation is reduced to :
     1 d d d + 8 d d + 25 d ( d + 8) +
3571
50
( d + 25) = 1 d d d + 8 d d + 25 d ( d + 8)
    Remove a bracket on the left of the equation:
     1 d d d + 8 d d + 25 d d + 25 d = 1 d d d + 8 d d + 25 d ( d + 8)
    Remove a bracket on the right of the equation::
     1 d d d + 8 d d + 25 d d + 25 d = 1 d d d + 8 d d + 25 d d + 25 d
    The equation is reduced to :
     1 d d d + 8 d d + 25 d d + 200 d = 1 d d d + 8 d d + 25 d d + 200 d
    Remove a bracket on the left of the equation:
     1 d d d + 8 d d + 25 d d + 200 d = 1 d d d + 8 d d + 25 d d + 200 d
    The equation is reduced to :
     1 d d d + 8 d d + 25 d d + 200 d = 1 d d d + 8 d d + 25 d d + 200 d
    Remove a bracket on the left of the equation:
     1 d d d + 8 d d + 25 d d + 200 d = 1 d d d + 8 d d + 25 d d + 200 d
    The equation is reduced to :
     1 d d d + 8 d d + 25 d d + 200 d = 1 d d d + 8 d d + 25 d d + 200 d
    The equation is reduced to :
     1 d d d + 8 d d + 25 d d +
19284
25
d = 1 d d d + 8 d d + 25 d d + 200 d
    Remove a bracket on the left of the equation:
     1 d d d + 8 d d + 25 d d +
19284
25
d = 1 d d d + 8 d d + 25 d d + 200 d
    The equation is reduced to :
     1 d d d + 8 d d + 25 d d +
19284
25
d = 1 d d d + 8 d d + 25 d d + 200 d

    The solution of the equation:
        d1≈-100.993459 , keep 6 decimal places
        d2≈-18.893611 , keep 6 decimal places
        d3≈-3.742929 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。