Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 8.156*(f+f-4.75)+3.925*(f-4.75+f-15.29)+2.720*(f-15.29+f-16.82) = 6*140*195*2/1000 .
    Question type: Equation
    Solution:Original question:
     
2039
250
( f + f
19
4
) +
157
40
( f
19
4
+ f
1529
100
) +
68
25
( f
1529
100
+ f
841
50
) = 6 × 140 × 195 × 2 ÷ 1000
    Remove the bracket on the left of the equation:
     Left side of the equation =
2039
250
f +
2039
250
f
2039
250
×
19
4
+
157
40
( f
19
4
+ f
1529
100
) +
68
25
( f
1529
100
+ f
841
50
)
                                             =
2039
250
f +
2039
250
f
38741
1000
+
157
40
( f
19
4
+ f
1529
100
) +
68
25
( f
1529
100
+ f
841
50
)
                                             =
2039
125
f
38741
1000
+
157
40
( f
19
4
+ f
1529
100
) +
68
25
( f
1529
100
+ f
841
50
)
                                             =
2039
125
f
38741
1000
+
157
40
f
157
40
×
19
4
+
157
40
f
157
40
×
1529
100
+
68
25
                                             =
2039
125
f
38741
1000
+
157
40
f
2983
160
+
157
40
f
240053
4000
+
68
25
( f
1529
100
+ f
841
50
)
                                             =
12081
500
f
58699
500
+
68
25
( f
1529
100
+ f
841
50
)
                                             =
12081
500
f
58699
500
+
68
25
f
68
25
×
1529
100
+
68
25
f
68
25
×
841
50
                                             =
12081
500
f
58699
500
+
68
25
f
25993
625
+
68
25
f
28594
625
                                             =
14801
500
f
511843
2500
    The equation is transformed into :
     
14801
500
f
511843
2500
= 6 × 140 × 195 × 2 ÷ 1000
     Right side of the equation =
1638
5
    The equation is transformed into :
     
14801
500
f
511843
2500
=
1638
5

    Transposition :
     
14801
500
f =
1638
5
+
511843
2500

    Combine the items on the right of the equation:
     
14801
500
f =
1330843
2500

    The coefficient of the unknown number is reduced to 1 :
      f =
1330843
2500
÷
14801
500
        =
1330843
2500
×
500
14801
        =
1330843
5
×
1
14801

    We obtained :
      f =
1330843
74005
    This is the solution of the equation.

    Convert the result to decimal form :
      f = 17.98315



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。