Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((55.02+x)*1.065-x)*0.02 = x .
    Question type: Equation
    Solution:Original question:
     ((
2751
50
+ x ) ×
213
200
x ) ×
1
50
= x
    Remove the bracket on the left of the equation:
     Left side of the equation = (
2751
50
+ x ) ×
213
200
×
1
50
x ×
1
50
                                             = (
2751
50
+ x ) ×
213
10000
x ×
1
50
                                             =
2751
50
×
213
10000
+ x ×
213
10000
1
50
x
                                             =
585963
500000
+ x ×
213
10000
1
50
x
                                             =
585963
500000
+
13
10000
x
    The equation is transformed into :
     
585963
500000
+
13
10000
x = x

    Transposition :
     
13
10000
x x = -
585963
500000

    Combine the items on the left of the equation:
     
9987
10000
x = -
585963
500000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
585963
500000
=
9987
10000
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
9987
10000
x =
585963
500000

    The coefficient of the unknown number is reduced to 1 :
      x =
585963
500000
÷
9987
10000
        =
585963
500000
×
10000
9987
        =
195321
50
×
1
3329

    We obtained :
      x =
195321
166450
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1.173451



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。