Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-450)*0.75/2000 = {(x-180)*0.75-300}/2400 .
    Question type: Equation
    Solution:Original question:
     ( x 450) ×
3
4
÷ 2000 = (( x 180) ×
3
4
300) ÷ 2400
     Left side of the equation = ( x 450) ×
3
8000
    The equation is transformed into :
     ( x 450) ×
3
8000
= (( x 180) ×
3
4
300) ÷ 2400
    Remove the bracket on the left of the equation:
     Left side of the equation = x ×
3
8000
450 ×
3
8000
                                             = x ×
3
8000
27
160
    The equation is transformed into :
     
3
8000
x
27
160
= (( x 180) ×
3
4
300) ÷ 2400
    Remove the bracket on the right of the equation:
     Right side of the equation = ( x 180) ×
3
4
×
1
2400
300 ×
1
2400
                                               = ( x 180) ×
1
3200
1
8
                                               = x ×
1
3200
180 ×
1
3200
1
8
                                               = x ×
1
3200
9
160
1
8
                                               =
1
3200
x
29
160
    The equation is transformed into :
     
3
8000
x
27
160
=
1
3200
x
29
160

    Transposition :
     
3
8000
x
1
3200
x = -
29
160
+
27
160

    Combine the items on the left of the equation:
     
1
16000
x = -
29
160
+
27
160

    Combine the items on the right of the equation:
     
1
16000
x = -
1
80

    The coefficient of the unknown number is reduced to 1 :
      x = -
1
80
÷
1
16000
        = -
1
80
× 16000
        = - 1 × 200

    We obtained :
      x = - 200
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。