Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 203921.67+X/3 = (114709.90+(1613400-X))*3/14 .
    Question type: Equation
    Solution:Original question:
     
20392167
100
+ X ÷ 3 = (
1147099
10
+ (1613400 X )) × 3 ÷ 14
     Right side of the equation = (
1147099
10
+ (1613400 X )) ×
3
14
    The equation is transformed into :
     
20392167
100
+
1
3
X = (
1147099
10
+ (1613400 X )) ×
3
14
    Remove the bracket on the right of the equation:
     Right side of the equation =
1147099
10
×
3
14
+ (1613400 X ) ×
3
14
                                               =
3441297
140
+ (1613400 X ) ×
3
14
                                               =
3441297
140
+ 1613400 ×
3
14
X ×
3
14
                                               =
3441297
140
+
2420100
7
X ×
3
14
                                               =
51843297
140
3
14
X
    The equation is transformed into :
     
20392167
100
+
1
3
X =
51843297
140
3
14
X

    Transposition :
     
1
3
X +
3
14
X =
51843297
140
20392167
100

    Combine the items on the left of the equation:
     
23
42
X =
51843297
140
20392167
100

    Combine the items on the right of the equation:
     
23
42
X =
29117829
175

    The coefficient of the unknown number is reduced to 1 :
      X =
29117829
175
÷
23
42
        =
29117829
175
×
42
23
        =
29117829
25
×
6
23

    We obtained :
      X =
174706974
575
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 303838.215652



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。