( | 180 | + | 267 | ) | ÷ | 31 | × | x | + | 443 2 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 124 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 934 |
Left side of the equation = | ( | 180 | + | 267 | ) | × | 1 31 | x | + | 443 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
( | 180 | + | 267 | ) | × | 1 31 | x | + | 443 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) | = | 934 |
Left side of the equation = | 180 | × | 1 31 | x | + | 267 | × | 1 31 | x | + | 443 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 180 31 | x | + | 267 31 | x | + | 443 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 447 31 | x | + | 443 62 | ( | x | + | 15 | ) | + | 4 | ( | x | + | 30 | ) |
= | 447 31 | x | + | 443 62 | x | + | 443 62 | × | 15 | + | 4 | ( | x | + | 30 | ) |
= | 447 31 | x | + | 443 62 | x | + | 6645 62 | + | 4 | ( | x | + | 30 | ) |
= | 1337 62 | x | + | 6645 62 | + | 4 | ( | x | + | 30 | ) |
= | 1337 62 | x | + | 6645 62 | + | 4 | x | + | 4 | × | 30 |
= | 1337 62 | x | + | 6645 62 | + | 4 | x | + | 120 |
= | 1585 62 | x | + | 14085 62 |
1585 62 | x | + | 14085 62 | = | 934 |
1585 62 | x | = | 934 | − | 14085 62 |
1585 62 | x | = | 43823 62 |
x | = | 43823 62 | ÷ | 1585 62 |
= | 43823 62 | × | 62 1585 |
= | 43823 | × | 1 1585 |
x | = | 43823 1585 |
x | = | 27.64858 |