Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 341.96×((1+0.031)1-1)+(0+10.26+0.01V)×((1+0.031)0.5-1) = 0 .
    Question type: Equation
    Solution:Original question:
     
8549
25
((1 +
31
1000
) × 11) + (0 +
513
50
+
1
100
V )((1 +
31
1000
) ×
1
2
1) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
8549
25
(1 +
31
1000
) × 1
8549
25
× 1 + (0 +
513
50
+
1
100
V )((1 +
31
1000
) ×
1
2
1)
                                             =
8549
25
(1 +
31
1000
)
8549
25
+ (0 +
513
50
+
1
100
V )((1 +
31
1000
) ×
1
2
1)
                                             =
8549
25
× 1 +
8549
25
×
31
1000
8549
25
+ (0 +
513
50
+
1
100
V )((1 +
31
1000
) ×
1
2
1)
                                             =
8549
25
+
265019
25000
8549
25
+ (0 +
513
50
+
1
100
V )((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+ (0 +
513
50
+
1
100
V )((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+ 0((1 +
31
1000
) ×
1
2
1) +
513
50
((1 +
31
1000
) ×
1
2
1) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+ 0(1 +
31
1000
) ×
1
2
0 × 1 +
513
50
((1 +
31
1000
) ×
1
2
1) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+ 0 (1 +
31
1000
)0 +
513
50
((1 +
31
1000
) ×
1
2
1) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+ 0 (1 +
31
1000
) +
513
50
((1 +
31
1000
) ×
1
2
1) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+ 0 × 1 + 0 ×
31
1000
+
513
50
((1 +
31
1000
) ×
1
2
1) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+ 0 + 0 +
513
50
((1 +
31
1000
) ×
1
2
1) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+
513
50
((1 +
31
1000
) ×
1
2
1) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+
513
50
(1 +
31
1000
) ×
1
2
513
50
× 1 +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
265019
25000
+
513
100
(1 +
31
1000
)
513
50
+
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
8519
25000
+
513
100
(1 +
31
1000
) +
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
8519
25000
+
513
100
× 1 +
513
100
×
31
1000
+
1
100
V ((1 +
31
1000
) ×
1
2
1)
                                             =
8519
25000
+
513
100
+
15903
100000
+
1
100
V ((1 +
31
1000
) ×
1
2
1)

    
        V≈1161.979360 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。