Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 846×[(1+0.0435)1-1]+(80+27.78+0.01V)×[(1+0.0435)0.5-1] = 0 .
    Question type: Equation
    Solution:Original question:
     846((1 +
87
2000
) × 11) + (80 +
1389
50
+
1
100
V )((1 +
87
2000
) ×
1
2
1) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 846(1 +
87
2000
) × 1846 × 1 + (80 +
1389
50
+
1
100
V )((1 +
87
2000
) ×
1
2
1)
                                             = 846(1 +
87
2000
)846 + (80 +
1389
50
+
1
100
V )((1 +
87
2000
) ×
1
2
1)
                                             = 846 × 1 + 846 ×
87
2000
846 + (80 +
1389
50
+
1
100
V )((1 +
87
2000
) ×
1
2
1)
                                             = 846 +
36801
1000
846 + (80 +
1389
50
+
1
100
V )((1 +
87
2000
) ×
1
2
1)
                                             =
36801
1000
+ (80 +
1389
50
+
1
100
V )((1 +
87
2000
) ×
1
2
1)
                                             =
36801
1000
+ 80((1 +
87
2000
) ×
1
2
1) +
1389
50
((1 +
87
2000
) ×
1
2
1) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             =
36801
1000
+ 80(1 +
87
2000
) ×
1
2
80 × 1 +
1389
50
((1 +
87
2000
) ×
1
2
1) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             =
36801
1000
+ 40(1 +
87
2000
)80 +
1389
50
((1 +
87
2000
) ×
1
2
1) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
43199
1000
+ 40(1 +
87
2000
) +
1389
50
((1 +
87
2000
) ×
1
2
1) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
43199
1000
+ 40 × 1 + 40 ×
87
2000
+
1389
50
((1 +
87
2000
) ×
1
2
1) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
43199
1000
+ 40 +
87
50
+
1389
50
((1 +
87
2000
) ×
1
2
1) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
1459
1000
+
1389
50
((1 +
87
2000
) ×
1
2
1) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
1459
1000
+
1389
50
(1 +
87
2000
) ×
1
2
1389
50
× 1 +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
1459
1000
+
1389
100
(1 +
87
2000
)
1389
50
+
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
29239
1000
+
1389
100
(1 +
87
2000
) +
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
29239
1000
+
1389
100
× 1 +
1389
100
×
87
2000
+
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
29239
1000
+
1389
100
+
120843
200000
+
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
2948957
200000
+
1
100
V ((1 +
87
2000
) ×
1
2
1)
                                             = -
2948957
200000
+
1
100
V (1 +
87
2000
) ×
1
2
1
100
V × 1
                                             = -
2948957
200000
+
1
200
V (1 +
87
2000
)
1
100
V
                                             = -
2948957
200000
+
1
200
V × 1 +
1
200
V ×
87
2000
1
100
V
                                             = -
2948957
200000
+
1
200
V +
87
400000
V
1
100
V
                                             = -
2948957
200000
1913
400000
V
    The equation is transformed into :
      -
2948957
200000
1913
400000
V = 0

    Transposition :
      -
1913
400000
V = 0 +
2948957
200000

    Combine the items on the right of the equation:
      -
1913
400000
V =
2948957
200000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      -
2948957
200000
=
1913
400000
V

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
1913
400000
V = -
2948957
200000

    The coefficient of the unknown number is reduced to 1 :
      V = -
2948957
200000
÷
1913
400000
        = -
2948957
200000
×
400000
1913
        = - 2948957 ×
2
1913

    We obtained :
      V = -
5897914
1913
    This is the solution of the equation.

    Convert the result to decimal form :
      V = - 3083.07057



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。