Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/d+1/(d+5)+1/(d+20)+1/(d+7.69) = 1/(d+3.92) .
    Question type: Equation
    Solution:Original question:
     1 ÷ d + 1 ÷ ( d + 5) + 1 ÷ ( d + 20) + 1 ÷ ( d +
769
100
) = 1 ÷ ( d +
98
25
)
     Multiply both sides of the equation by: d  ,  ( d +
98
25
)
     1( d +
98
25
) + 1 ÷ ( d + 5) × d ( d +
98
25
) + 1 ÷ ( d + 20) × d ( d +
98
25
) + 1 ÷ ( d +
769
100
) = 1 d
    Remove a bracket on the left of the equation::
     1 d + 1 ×
98
25
+ 1 ÷ ( d + 5) × d ( d +
98
25
) + 1 ÷ ( d + 20) × d ( d +
98
25
) = 1 d
    The equation is reduced to :
     1 d +
98
25
+ 1 ÷ ( d + 5) × d ( d +
98
25
) + 1 ÷ ( d + 20) × d ( d +
98
25
) + 1 = 1 d
     Multiply both sides of the equation by:( d + 5)
     1 d ( d + 5) +
98
25
( d + 5) + 1 d ( d +
98
25
) + 1 ÷ ( d + 20) × d ( d +
98
25
) = 1 d ( d + 5)
    Remove a bracket on the left of the equation:
     1 d d + 1 d × 5 +
98
25
( d + 5) + 1 d ( d +
98
25
) + 1 = 1 d ( d + 5)
    Remove a bracket on the right of the equation::
     1 d d + 1 d × 5 +
98
25
( d + 5) + 1 d ( d +
98
25
) + 1 = 1 d d + 1 d × 5
    The equation is reduced to :
     1 d d + 5 d +
98
25
( d + 5) + 1 d ( d +
98
25
) + 1 ÷ ( d + 20) = 1 d d + 5 d
     Multiply both sides of the equation by:( d + 20)
     1 d d ( d + 20) + 5 d ( d + 20) +
98
25
( d + 5)( d + 20) + 1 d = 1 d d ( d + 20) + 5 d ( d + 20)
    Remove a bracket on the left of the equation:
     1 d d d + 1 d d × 20 + 5 d ( d + 20) +
98
25
= 1 d d ( d + 20) + 5 d ( d + 20)
    Remove a bracket on the right of the equation::
     1 d d d + 1 d d × 20 + 5 d ( d + 20) +
98
25
= 1 d d d + 1 d d × 20 + 5 d ( d + 20)
    The equation is reduced to :
     1 d d d + 20 d d + 5 d ( d + 20) +
98
25
( d + 5) = 1 d d d + 20 d d + 5 d ( d + 20)
     Multiply both sides of the equation by:( d +
769
100
)
     1 d d d ( d +
769
100
) + 20 d d ( d +
769
100
) + 5 d ( d + 20) = 1 d d d ( d +
769
100
) + 20 d d ( d +
769
100
) + 5 d ( d + 20)
    Remove a bracket on the left of the equation:
     1 d d d d + 1 d d d ×
769
100
+ 20 d = 1 d d d ( d +
769
100
) + 20 d d ( d +
769
100
) + 5 d ( d + 20)
    Remove a bracket on the right of the equation::
     1 d d d d + 1 d d d ×
769
100
+ 20 d = 1 d d d d + 1 d d d ×
769
100
+ 20 d
    The equation is reduced to :
     1 d d d d +
769
100
d d d + 20 d d = 1 d d d d +
769
100
d d d + 20 d d
    Remove a bracket on the left of the equation:
     1 d d d d +
769
100
d d d + 20 d d = 1 d d d d +
769
100
d d d + 20 d d
    Remove a bracket on the right of the equation::
     1 d d d d +
769
100
d d d + 20 d d = 1 d d d d +
769
100
d d d + 20 d d
    The equation is reduced to :
     1 d d d d +
769
100
d d d + 20 d d = 1 d d d d +
769
100
d d d + 20 d d
    Remove a bracket on the left of the equation:
     1 d d d d +
769
100
d d d + 20 d d = 1 d d d d +
769
100
d d d + 20 d d
    Remove a bracket on the right of the equation::
     1 d d d d +
769
100
d d d + 20 d d = 1 d d d d +
769
100
d d d + 20 d d

    The solution of the equation:
        d1≈-15.199980 , keep 6 decimal places
        d2≈-6.019984 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。