Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1.25*1.2*(2400+346)*113.8%*794/(794+x-45) = 2502 .
    Question type: Equation
    Solution:Original question:
     
5
4
×
6
5
(2400 + 346) ×
569
500
× 794 ÷ (794 + x 45) = 2502
     Multiply both sides of the equation by:(794 + x 45)
     
5
4
×
6
5
(2400 + 346) ×
569
500
× 794 = 2502(794 + x 45)
    Remove a bracket on the left of the equation::
     
5
4
×
6
5
× 2400 ×
569
500
× 794 +
5
4
×
6
5
× 346 ×
569
500
× 794 = 2502(794 + x 45)
    Remove a bracket on the right of the equation::
     
5
4
×
6
5
× 2400 ×
569
500
× 794 +
5
4
×
6
5
× 346 ×
569
500
× 794 = 2502 × 794 + 2502 x 2502 × 45
    The equation is reduced to :
     
16264296
5
+
117238467
250
= 1986588 + 2502 x 112590
    The equation is reduced to :
     
930453267
250
= 1873998 + 2502 x

    Transposition :
      - 2502 x = 1873998
930453267
250

    Combine the items on the right of the equation:
      - 2502 x = -
461953767
250

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
461953767
250
= 2502 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     2502 x =
461953767
250

    The coefficient of the unknown number is reduced to 1 :
      x =
461953767
250
÷ 2502
        =
461953767
250
×
1
2502
        =
153984589
250
×
1
834

    We obtained :
      x =
153984589
208500
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 738.535199



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。