Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (398*1.2+1200)*20/1.3*1.85x+(398*1.7+1200)*2.2*20/1.3*1.85x = 450000 .
    Question type: Equation
    Solution:Original question:
     (398 ×
6
5
+ 1200) × 20 ÷
13
10
×
37
20
x + (398 ×
17
10
+ 1200) ×
11
5
× 20 ÷
13
10
×
37
20
x = 450000
     Left side of the equation = (398 ×
6
5
+ 1200) ×
370
13
x + (398 ×
17
10
+ 1200) ×
814
13
x
    The equation is transformed into :
     (398 ×
6
5
+ 1200) ×
370
13
x + (398 ×
17
10
+ 1200) ×
814
13
x = 450000
    Remove the bracket on the left of the equation:
     Left side of the equation = 398 ×
6
5
×
370
13
x + 1200 ×
370
13
x + (398 ×
17
10
+ 1200) ×
814
13
x
                                             =
176712
13
x +
444000
13
x + (398 ×
17
10
+ 1200) ×
814
13
x
                                             =
620712
13
x + (398 ×
17
10
+ 1200) ×
814
13
x
                                             =
620712
13
x + 398 ×
17
10
×
814
13
x + 1200 ×
814
13
x
                                             =
620712
13
x +
2753762
65
x +
976800
13
x
                                             =
10741322
65
x
    The equation is transformed into :
     
10741322
65
x = 450000

    The coefficient of the unknown number is reduced to 1 :
      x = 450000 ÷
10741322
65
        = 450000 ×
65
10741322
        = 225000 ×
65
5370661

    We obtained :
      x =
14625000
5370661
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 2.723128



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。