Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.3((x-50)/220+1)/(1+0.66) = (670+x+220-50)/(670+220-50) .
    Question type: Equation
    Solution:Original question:
     
3
10
(( x 50) ÷ 220 + 1) ÷ (1 +
33
50
) = (670 + x + 22050) ÷ (670 + 22050)
     Multiply both sides of the equation by:(1 +
33
50
) ,  (670 + 22050)
     
3
10
(( x 50) ÷ 220 + 1)(670 + 22050) = (670 + x + 22050)(1 +
33
50
)
    Remove a bracket on the left of the equation::
     
3
10
( x 50) ÷ 220 × (670 + 22050) +
3
10
× 1(670 + 22050) = (670 + x + 22050)(1 +
33
50
)
    Remove a bracket on the right of the equation::
     
3
10
( x 50) ÷ 220 × (670 + 22050) +
3
10
× 1(670 + 22050) = 670(1 +
33
50
) + x (1 +
33
50
) + 220(1 +
33
50
)50(1 +
33
50
)
    The equation is reduced to :
     
3
2200
( x 50)(670 + 22050) +
3
10
(670 + 22050) = 670(1 +
33
50
) + x (1 +
33
50
) + 220(1 +
33
50
)50(1 +
33
50
)
    Remove a bracket on the left of the equation:
     
3
2200
x (670 + 22050)
3
2200
× 50(670 + 22050) +
3
10
(670 + 22050) = 670(1 +
33
50
) + x (1 +
33
50
) + 220(1 +
33
50
)50(1 +
33
50
)
    Remove a bracket on the right of the equation::
     
3
2200
x (670 + 22050)
3
2200
× 50(670 + 22050) +
3
10
(670 + 22050) = 670 × 1 + 670 ×
33
50
+ x (1 +
33
50
) + 220(1 +
33
50
)50(1 +
33
50
)
    The equation is reduced to :
     
3
2200
x (670 + 22050)
3
44
(670 + 22050) +
3
10
(670 + 22050) = 670 +
2211
5
+ x (1 +
33
50
) + 220(1 +
33
50
)50(1 +
33
50
)
    The equation is reduced to :
     
3
2200
x (670 + 22050)
3
44
(670 + 22050) +
3
10
(670 + 22050) =
5561
5
+ x (1 +
33
50
) + 220(1 +
33
50
)50(1 +
33
50
)
    Remove a bracket on the left of the equation:
     
3
2200
x × 670 +
3
2200
x × 220
3
2200
x × 50
3
44
(670 + 22050) +
3
10
=
5561
5
+ x (1 +
33
50
) + 220(1 +
33
50
)50(1 +
33
50
)
    Remove a bracket on the right of the equation::
     
3
2200
x × 670 +
3
2200
x × 220
3
2200
x × 50
3
44
(670 + 22050) +
3
10
=
5561
5
+ x × 1 + x ×
33
50
+ 220(1 +
33
50
)50(1 +
33
50
)
    The equation is reduced to :
     
201
220
x +
3
10
x
3
44
x
3
44
(670 + 22050) +
3
10
(670 + 22050) =
5561
5
+ x × 1 + x ×
33
50
+ 220(1 +
33
50
)50(1 +
33
50
)
    The equation is reduced to :
     
63
55
x
3
44
(670 + 22050) +
3
10
(670 + 22050) =
5561
5
+
83
50
x + 220(1 +
33
50
)50(1 +
33
50
)
    Remove a bracket on the left of the equation:
     
63
55
x
3
44
× 670
3
44
× 220 +
3
44
× 50 +
3
10
(670 + 22050) =
5561
5
+
83
50
x + 220(1 +
33
50
)50(1 +
33
50
)
    Remove a bracket on the right of the equation::
     
63
55
x
3
44
× 670
3
44
× 220 +
3
44
× 50 +
3
10
(670 + 22050) =
5561
5
+
83
50
x + 220 × 1 + 220 ×
33
50
50(1 +
33
50
)
    The equation is reduced to :
     
63
55
x
1005
22
15 +
75
22
+
3
10
(670 + 22050) =
5561
5
+
83
50
x + 220 +
726
5
50(1 +
33
50
)
    The equation is reduced to :
     
63
55
x
630
11
+
3
10
(670 + 22050) =
7387
5
+
83
50
x 50(1 +
33
50
)
    Remove a bracket on the left of the equation:
     
63
55
x
630
11
+
3
10
× 670 +
3
10
× 220
3
10
× 50 =
7387
5
+
83
50
x 50(1 +
33
50
)
    Remove a bracket on the right of the equation::
     
63
55
x
630
11
+
3
10
× 670 +
3
10
× 220
3
10
× 50 =
7387
5
+
83
50
x 50 × 150 ×
33
50
    The equation is reduced to :
     
63
55
x
630
11
+ 201 + 6615 =
7387
5
+
83
50
x 5033
    The equation is reduced to :
     
63
55
x +
2142
11
=
6972
5
+
83
50
x

    Transposition :
     
63
55
x
83
50
x =
6972
5
2142
11

    Combine the items on the left of the equation:
      -
283
550
x =
6972
5
2142
11

    Combine the items on the right of the equation:
      -
283
550
x =
65982
55

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      -
65982
55
=
283
550
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
283
550
x = -
65982
55

    The coefficient of the unknown number is reduced to 1 :
      x = -
65982
55
÷
283
550
        = -
65982
55
×
550
283
        = - 65982 ×
10
283

    We obtained :
      x = -
659820
283
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 2331.519435



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。