Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 10×((1/(x))+(1/(x+4)))+(1/(((x)/2)+2)) = 1 .
    Question type: Equation
    Solution:Original question:
     10((1 ÷ ( x )) + (1 ÷ ( x + 4))) + (1 ÷ ((( x ) ÷ 2) + 2)) = 1
    Remove a bracket on the left of the equation::
     10(1 ÷ ( x )) + 10(1 ÷ ( x + 4)) + (1 ÷ ((( x ) ÷ 2) + 2)) = 1
    Remove a bracket on the left of the equation:
     10 × 1 ÷ ( x ) + 10(1 ÷ ( x + 4)) + (1 ÷ ((( x ) ÷ 2) + 2)) = 1
    The equation is reduced to :
     10 ÷ ( x ) + 10(1 ÷ ( x + 4)) + (1 ÷ ((( x ) ÷ 2) + 2)) = 1
     Multiply both sides of the equation by:( x )
     10 + 10(1 ÷ ( x + 4))( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x ) = 1( x )
    Remove a bracket on the left of the equation:
     10 + 10 × 1 ÷ ( x + 4) × ( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x ) = 1( x )
    Remove a bracket on the right of the equation::
     10 + 10 × 1 ÷ ( x + 4) × ( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x ) = 1 x
    The equation is reduced to :
     10 + 10 ÷ ( x + 4) × ( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x ) = 1 x
     Multiply both sides of the equation by:( x + 4)
     10( x + 4) + 10( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x )( x + 4) = 1 x ( x + 4)
    Remove a bracket on the left of the equation:
     10 x + 10 × 4 + 10( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x )( x + 4) = 1 x ( x + 4)
    Remove a bracket on the right of the equation::
     10 x + 10 × 4 + 10( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x )( x + 4) = 1 x x + 1 x × 4
    The equation is reduced to :
     10 x + 40 + 10( x ) + (1 ÷ ((( x ) ÷ 2) + 2))( x )( x + 4) = 1 x x + 4 x
    Remove a bracket on the left of the equation:
     10 x + 40 + 10 x + (1 ÷ ((( x ) ÷ 2) + 2))( x )( x + 4) = 1 x x + 4 x
    The equation is reduced to :
     20 x + 40 + (1 ÷ ((( x ) ÷ 2) + 2))( x )( x + 4) = 1 x x + 4 x
    Remove a bracket on the left of the equation:
     20 x + 40 + 1 ÷ ((( x ) ÷ 2) + 2) × ( x )( x + 4) = 1 x x + 4 x
     Multiply both sides of the equation by:((( x ) ÷ 2) + 2)
     20 x ((( x ) ÷ 2) + 2) + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) = 1 x x ((( x ) ÷ 2) + 2) + 4 x ((( x ) ÷ 2) + 2)
    Remove a bracket on the left of the equation:
     20 x (( x ) ÷ 2) + 20 x × 2 + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) = 1 x x ((( x ) ÷ 2) + 2) + 4 x ((( x ) ÷ 2) + 2)
    Remove a bracket on the right of the equation::
     20 x (( x ) ÷ 2) + 20 x × 2 + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) = 1 x x (( x ) ÷ 2) + 1 x x × 2 + 4 x ((( x ) ÷ 2) + 2)
    The equation is reduced to :
     20 x (( x ) ÷ 2) + 40 x + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) = 1 x x (( x ) ÷ 2) + 2 x x + 4 x ((( x ) ÷ 2) + 2)
    Remove a bracket on the left of the equation:
     20 x ( x ) ÷ 2 + 40 x + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) = 1 x x (( x ) ÷ 2) + 2 x x + 4 x ((( x ) ÷ 2) + 2)
    Remove a bracket on the right of the equation::
     20 x ( x ) ÷ 2 + 40 x + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) = 1 x x ( x ) ÷ 2 + 2 x x + 4 x ((( x ) ÷ 2) + 2)
    The equation is reduced to :
     10 x ( x ) + 40 x + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) =
1
2
x x ( x ) + 2 x x + 4 x ((( x ) ÷ 2) + 2)
    Remove a bracket on the left of the equation:
     10 x x + 40 x + 40((( x ) ÷ 2) + 2) + 1( x )( x + 4) =
1
2
x x ( x ) + 2 x x + 4 x ((( x ) ÷ 2) + 2)

    After the equation is converted into a general formula, it is converted into:
    ( x + 2 )( x - 20 )=0
    From
        x + 2 = 0
        x - 20 = 0

    it is concluded that::
        x1=-2
        x2=20
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。