Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/(1/390+1/510)*I-3 = (0.02-I)*8400/43 .
    Question type: Equation
    Solution:Original question:
     1 ÷ (1 ÷ 390 + 1 ÷ 510) × I 3 = (
1
50
I ) × 8400 ÷ 43
     Multiply both sides of the equation by:(1 ÷ 390 + 1 ÷ 510)
     1 I 3(1 ÷ 390 + 1 ÷ 510) = (
1
50
I ) × 8400 ÷ 43 × (1 ÷ 390 + 1 ÷ 510)
    Remove a bracket on the left of the equation::
     1 I 3 × 1 ÷ 3903 × 1 ÷ 510 = (
1
50
I ) × 8400 ÷ 43 × (1 ÷ 390 + 1 ÷ 510)
    Remove a bracket on the right of the equation::
     1 I 3 × 1 ÷ 3903 × 1 ÷ 510 =
1
50
× 8400 ÷ 43 × (1 ÷ 390 + 1 ÷ 510) I × 8400 ÷ 43 × (1 ÷ 390 + 1 ÷ 510)
    The equation is reduced to :
     1 I
1
130
1
170
=
168
43
(1 ÷ 390 + 1 ÷ 510) I ×
8400
43
(1 ÷ 390 + 1 ÷ 510)
    The equation is reduced to :
     1 I
3
221
=
168
43
(1 ÷ 390 + 1 ÷ 510) I ×
8400
43
(1 ÷ 390 + 1 ÷ 510)
    Remove a bracket on the right of the equation::
     1 I
3
221
=
168
43
× 1 ÷ 390 +
168
43
× 1 ÷ 510 I ×
8400
43
(1 ÷ 390 + 1 ÷ 510)
    The equation is reduced to :
     1 I
3
221
=
28
2795
+
28
3655
I ×
8400
43
(1 ÷ 390 + 1 ÷ 510)
    The equation is reduced to :
     1 I
3
221
=
168
9503
I ×
8400
43
(1 ÷ 390 + 1 ÷ 510)
    Remove a bracket on the right of the equation::
     1 I
3
221
=
168
9503
I ×
8400
43
× 1 ÷ 390 I ×
8400
43
× 1 ÷ 510
    The equation is reduced to :
     1 I
3
221
=
168
9503
I ×
280
559
I ×
280
731
    The equation is reduced to :
     1 I
3
221
=
168
9503
8400
9503
I

    Transposition :
     1 I +
8400
9503
I =
168
9503
+
3
221

    Combine the items on the left of the equation:
     
17903
9503
I =
168
9503
+
3
221

    Combine the items on the right of the equation:
     
17903
9503
I =
297
9503

    The coefficient of the unknown number is reduced to 1 :
      I =
297
9503
÷
17903
9503
        =
297
9503
×
9503
17903
        = 297 ×
1
17903

    We obtained :
      I =
297
17903
    This is the solution of the equation.

    Convert the result to decimal form :
      I = 0.016589



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。