Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((((X*2+6)*2+6)*2+6)*2+6)*2 = 999 .
    Question type: Equation
    Solution:Original question:
     (((( X × 2 + 6) × 2 + 6) × 2 + 6) × 2 + 6) × 2 = 999
    Remove the bracket on the left of the equation:
     Left side of the equation = ((( X × 2 + 6) × 2 + 6) × 2 + 6) × 2 × 2 + 6 × 2
                                             = ((( X × 2 + 6) × 2 + 6) × 2 + 6) × 4 + 12
                                             = (( X × 2 + 6) × 2 + 6) × 2 × 4 + 6 × 4 + 12
                                             = (( X × 2 + 6) × 2 + 6) × 8 + 24 + 12
                                             = (( X × 2 + 6) × 2 + 6) × 8 + 36
                                             = ( X × 2 + 6) × 2 × 8 + 6 × 8 + 36
                                             = ( X × 2 + 6) × 16 + 48 + 36
                                             = ( X × 2 + 6) × 16 + 84
                                             = X × 2 × 16 + 6 × 16 + 84
                                             = X × 32 + 96 + 84
                                             = 32 X + 180
    The equation is transformed into :
     32 X + 180 = 999

    Transposition :
     32 X = 999180

    Combine the items on the right of the equation:
     32 X = 819

    The coefficient of the unknown number is reduced to 1 :
      X = 819 ÷ 32
        = 819 ×
1
32

    We obtained :
      X =
819
32
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 25.59375



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。