Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation X = 2133333340+(x*0.25%+200000)+16707550+(x*110%*8.80%)+[x-2133333340+(x*0.25%+200000)+16707550+(x*110%*8.80%)] .
    Question type: Equation
    Solution:Original question:
      X = 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
) + ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
     Right side of the equation = 2150040890 + ( X ×
1
400
+ 200000) + ( X ×
110
100
×
44
500
) + ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
    The equation is transformed into :
      X = 2150040890 + ( X ×
1
400
+ 200000) + ( X ×
110
100
×
44
500
) + ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
    Remove the bracket on the right of the equation:
     Right side of the equation = 2150040890 + X ×
1
400
+ 200000 + ( X ×
110
100
×
44
500
) + ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
                                               = 2150240890 +
1
400
X + ( X ×
110
100
×
44
500
) + ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
                                               = 2150240890 +
1
400
X + X ×
110
100
×
44
500
+ ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
                                               = 2150240890 +
1
400
X + X ×
121
1250
+ ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
                                               = 2150240890 +
993
10000
X + ( X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
))
                                               = 2150240890 +
993
10000
X + X 2133333340 + ( X ×
1
400
+ 200000) + 16707550 + ( X ×
110
100
×
44
500
)
                                               = 33615100 +
10993
10000
X + ( X ×
1
400
+ 200000) + ( X ×
110
100
×
44
500
)
                                               = 33615100 +
10993
10000
X + X ×
1
400
+ 200000 + ( X ×
110
100
×
44
500
)
                                               = 33815100 +
5509
5000
X + ( X ×
110
100
×
44
500
)
                                               = 33815100 +
5509
5000
X + X ×
110
100
×
44
500
                                               = 33815100 +
5509
5000
X + X ×
121
1250
                                               = 33815100 +
5993
5000
X
    The equation is transformed into :
      X = 33815100 +
5993
5000
X

    Transposition :
      X
5993
5000
X = 33815100

    Combine the items on the left of the equation:
      -
993
5000
X = 33815100

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      - 33815100 =
993
5000
X

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
993
5000
X = - 33815100

    The coefficient of the unknown number is reduced to 1 :
      X = - 33815100 ÷
993
5000
        = - 33815100 ×
5000
993
        = - 11271700 ×
5000
331

    We obtained :
      X = -
56358500000
331
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。