Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > History of Derivative Function Calculation
    Finding the 1th Order Derivative of Function ln(1+x^2) on x
    Finding the 4th Order Derivative of Function lnlnlnlnlnlnlnlnlnlnX on x
    Finding the 1th Order Derivative of Function (tan x)-x on x
    Finding the 1th Order Derivative of Function dy/dx on x
    Finding the 4th Order Derivative of Function (x-4)e^x+C1x^3+C2x^2+C3x+C4 on x
    Finding the 3th Order Derivative of Function (x-3)e^x+C1x^2+C2x+C3 on x
    Finding the 2th Order Derivative of Function (x-2)e^x+C1x+C2 on x
    Finding the 1th Order Derivative of Function tantatant-ttanatant on t
    Finding the 1th Order Derivative of Function xlnx-x+C on x
    Finding the 1th Order Derivative of Function xarcsinx+(1-x^2)^(1/2);xarccosx-(1-x^2)^(1/2);xarctanx-1/2ln(1+x^2) on x
    Finding the 2th Order Derivative of Function e^x/(1+x) on x
    Finding the 2th Order Derivative of Function 2*x^2/(1-x)^2 on x
    Finding the 1th Order Derivative of Function (x-a)(lnx-a) on x
    Finding the 1th Order Derivative of Function x(csin(x)+bcos(x)) on x
    Finding the 1th Order Derivative of Function x(asin(x)+bcos(x)) on x
    Finding the 1th Order Derivative of Function x(asinx+bcosx) on x
    Finding the 1th Order Derivative of Function arccosx on x
    Finding the 1th Order Derivative of Function arccos(x/a) on x
    Finding the 1th Order Derivative of Function x^(4x) on x
    Finding the 1th Order Derivative of Function x^4x on x

Home page << page35 page36 page37 page38 page39 ... ... page50 page51 page52 page53 page54 >> Last page 1982 pages in total



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。