Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > History of Derivative Function Calculation
    Finding the 1th Order Derivative of Function i on x
    Finding the 1th Order Derivative of Function i on x
    Finding the 1th Order Derivative of Function sqrt(x)*i on x
    Finding the 1th Order Derivative of Function sqrt(sqrt(x^2))+(sin(x))^2 on x
    Finding the 1th Order Derivative of Function x^3+sinh(x) on x
    Finding the 1th Order Derivative of Function (lnx-1)/(lnx+1) on x
    Finding the 1th Order Derivative of Function x^3+sinh(x) on x
    Finding the 1th Order Derivative of Function sqrt(x^2)+sqrt(x)+sin(x) on x
    Finding the 1th Order Derivative of Function (√(1+x)-1)(cosx-1) on x
    Finding the 1th Order Derivative of Function ln(x)+cosh(x) on x
    Finding the 1th Order Derivative of Function ln(x) on x
    Finding the 1th Order Derivative of Function x^3+2x^2-5x+1 on x
    Finding the 1th Order Derivative of Function x^2+3x-5 on x
    Finding the 1th Order Derivative of Function sqrt(x^2)+sqrt(x)+sin(x) on x
    Finding the 1th Order Derivative of Function abs(x)+sqrt(x)+sin(x) on x
    Finding the 1th Order Derivative of Function sqrt(abs(x))+(sin(x))^2 on x
    Finding the 1th Order Derivative of Function x^2 on x
    Finding the 1th Order Derivative of Function √(1+2*x^3) on x
    Finding the 1th Order Derivative of Function ln(1+x) on x
    Finding the 1th Order Derivative of Function sin0 on x

Home page << page365 page366 page367 page368 page369 ... ... page380 page381 page382 page383 page384 >> Last page 1980 pages in total



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。