Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > History of Derivative Function Calculation
    Finding the 1th Order Derivative of Function (x*y^2+y)^x on x
    Finding the 1th Order Derivative of Function (x/y)^z on z
    Finding the 1th Order Derivative of Function (x/y)^z on y
    Finding the 1th Order Derivative of Function (x/y)^z on x
    Finding the 1th Order Derivative of Function sinx/(sinx+cosx) on x
    Finding the 1th Order Derivative of Function SIN345*x^8/COS34789/e^45678 on x
    Finding the 1th Order Derivative of Function LN345+E^45+SIN3489 on x
    Finding the 1th Order Derivative of Function e^x*sin(x^2+y) on y
    Finding the 1th Order Derivative of Function (e^x)*sin(x^2+y) on x
    Finding the 1th Order Derivative of Function x+2y-(x^2+y^2)^(1/2) on x
    Finding the 1th Order Derivative of Function (1+1/n)^n on n
    Finding the 1th Order Derivative of Function (y-1)arcsin(x/(1+xy)) on x
    Finding the 1th Order Derivative of Function (lnx)/2 on x
    Finding the 1th Order Derivative of Function 16/(x+2)^2 on x
    Finding the 1th Order Derivative of Function tanx; on x
    Finding the 1th Order Derivative of Function sin(1/x) on x
    Finding the 1th Order Derivative of Function sin1/x on x
    Finding the 1th Order Derivative of Function ln(x/(x-2)) on x
    Finding the 1th Order Derivative of Function ln(2x^2-y) on x
    Finding the 1th Order Derivative of Function ln(2x^2-y) on y

Home page << page153 page154 page155 page156 page157 ... ... page168 page169 page170 page171 page172 >> Last page 1982 pages in total



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。